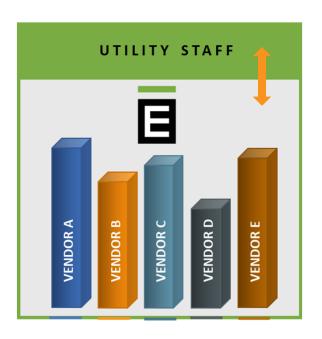
AMI Vendor Contracting Overview

Brownsville Public Utilities Board



E Source Role

100% vendor-neutral, providing AMI project management, advisory and vendor liaison support on your behalf

We work on your behalf to bridge the gap in services

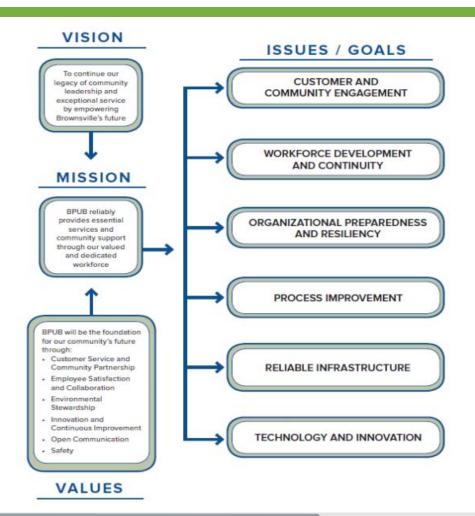
E Source Task and Deliverables

Task Name		Deliverables
Task 1 - Vendor Contract Negotiations	 Customized system/solution acceptance criteria Vendor(s) scope(s) of work with firm pricing 	Presentation to management or governing body
Task 2 - Project and Vendor Management	 Project Charter Project Execution Plan Project Budget Periodic Status Reports 	 Meeting Agendas and Minutes Updated AMI Implementation Schedule End of Project Close Out/Summary Report
Task 3 - Solution Architecture	As-is and to-be system	
Task 4 - Project Engineering	Requirements Management Plan (RMP)	Initial Requirements Traceability Matrix (RTM)
Task 5 - Testing Support	AMI Overall Test Strategy Test Plans for all BPUB-owned Tests	 Reviewed procedures, results with interpretation, and recommendations documentation Final Requirements Traceability Matrix
Task 6 - Data Management and Quality Assurance	Data Management Plan	Training materials
Task 7 - Business Process Design	Finalized current state process diagrams AMI Operational Staffing Plan	Draft PoliciesDraft future state process diagrams
Task 8 - Organizational Change Management	Stakeholder AnalysisSponsors Activities GuideVision & Elevator Speech	 Content for internal stakeholder communications Change Management Plan
Task 9 - Customer Engagement	Support development of a Customer Engagement Plan	Content for customer communications
Task 10 - Meter Deployment Quality Assurance	Support documentation in meter vendor software	Inspection reports on verification of vendor work
Task 11 - Fixed Network Deployment Support	Site development plan for each data collector site	

What is AMI?

Advanced Metering Infrastructure (AMI) is an integration of many technologies that provide an intelligent connection between BPUB and their customers

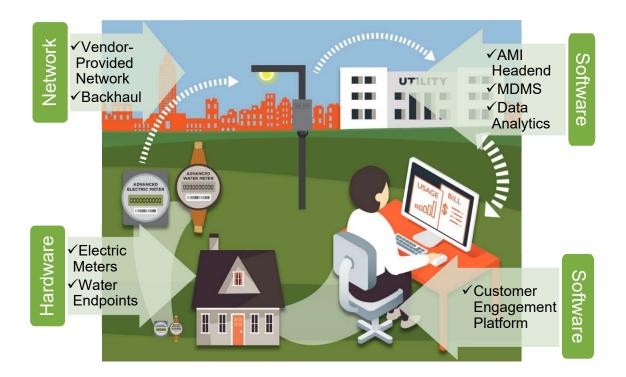
Infrastructure includes communication networks between the meters and BPUB; meter readings and other data are transmitted over the network and stored in a meter data management system (MDMS)


The MDMS will send reads to the billing system and provide useful operational reports for BPUB

As part of the AMI project, new electric meters, water meters, and communication devices will be installed by a contractor

BPUB Strategic Plan

- AMI will enable BPUB to:
 - Engage our customers via phone, text or email with near real time information on their account, electric and water consumption
 - Proactively monitor systems to reduce losses
 - Know when, where and the scope of outages
 - Respond faster, reduce truck rolls, and send the proper crews the first time

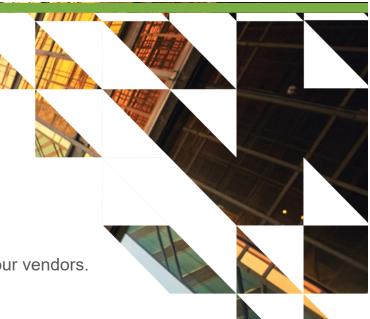


Vendor Contracting

BPUB AMI Solution

- Landis + Gyr
 - Electric meters
 - Gridstream mesh RF network
 - Command Center headend system
- Badger
 - Water meters
 - Badger Orion LTE-m cellular endpoints
 - BEACON headend system
- SmartWorks
 - Compass Meter Data Management System (MDMS) for electric and water
- Allegiant
 - Electric and water meter and network installation services

Initial Deployment Area



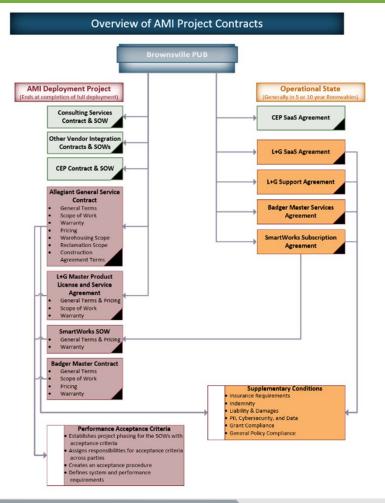
The initial deployment area (IDA) will deploy

- 2,819 electric meters
- 2,446 water meters
- 1 network gateway
- 7 network routers

Contracting Snapshot

- BPUB team led negotiations with support from
 - Spencer Fane legal team focusing on terms and conditions
 - E Source negotiations team focusing on statements of work
- Contracting began in January 2023
 - Initial legal support provided by DTRG
 - Spencer Fane replaced DTRG as legal counsel in May 2023
- Negotiating teams worked through 22 separate documents across four vendors. Contracting documents include:
 - General services contracts
 - Master services agreements
 - Material pricing
 - Construction agreements
 - Statements of work
 - Performance acceptance and payment criteria
 - Supplementary conditions and support agreements
 - SAAS agreements
- A thorough and exacting negotiation process is crucial as they establish the foundation for 20+ year relationships with these vendors

AMI Contracts


The AMI contracts cover both the deployment project and the long-term operational state

Vendors

- Landis+Gyr
- Badger
- Allegiant
- Harris

Services & Equipment

- Electric and water meters orders and pricing
- AMI RF network and equipment
- Cellular endpoints and network
- Meter and network installation services
- Software licenses and support
- Software implementation and integration services

Performance Acceptance & Payment Criteria

- These contracts require substantial coordination between vendors
- To prevent cross-talk, a common exhibit was added to all contracts to align responsibilities
- Vendors must prove they have completed certain milestones before invoicing for payment or proceeding with additional work

Criteria	Landis+Gyr	Badger Meter	Allegiant	SmartWorks	Brownsville Public Utilities Board
Provide Notice to Proceed	A (10%)	A (10%)	A (10%)	A (10%)	R
Approve a project charter	С	С	С	С	R/A
Define a project team	R/C/I (2%)	R/C/I	R/C/I (2%)	R/C/I (2%)	R/A/C
Produce a project communication plan	С	С	С	С	R/A
Coordinate, schedule, and attend a kickoff meeting	R (5%)	R (10%)	R (5%)	R (5%)	R/A
Produce a Project Execution Plan	С	С	С	С	R/A

The Performance Acceptance & Payment Criteria document divides the project into phases, and each phase has criteria broken into a RACI* matrix; this excerpt is for the Planning Phase

*RACI – Responsible, Accountable, Consulted, Informed

Landis+Gyr

Scope

- 55k electric meters
- 16 network gateways & 33 routers
- Headend software: Command Center
- Software integrations
- Professional Services including training, testing, & management

Fees

- \$6.7 million total capital
- \$6k monthly O&M
- 15-year initial term + 3-year renewal terms

Key Takeaways

- Landis+Gyr has committed to meeting service level agreements (SLAs) for network performance and read delivery
- Integrations include OMS
- Reactive meter upgrade

Landis+Gyr

Support Agreement – Limitation of Liability

- Aggregate liability shall not exceed total amount paid to L+G under the agreement in the 24-month period preceding event giving rise to a claim
- No indirect, consequential, incidental, special, punitive, or exemplary damages
- Exclusions: personal injury, death, damage to real or tangible personal property caused by negligent acts, omissions, or willful misconduct
- Master Agreement:
 - First 5 years: Greater of \$500,000 or fees paid and payable by customer to L+G during preceding 23-month period
 - After initial 5-year term: fees paid and payable by customer to L+G during preceding 23-month period

Support Agreement – Indemnity

§ L+G to indemnify for third party claims arising out of or resulting from: violation of law; liens or bonds asserted by subcontractors; bodily injury or death or property damage; service provider's provision of or customer's use of the services; breach of confidential information; IP infringement

Governing Law and Venue

- Actions to be tried in the State and Federal courts in Cameron County, Texas.
- No trial by jury.

Badger

Scope

- 18k water meters & 40k registers
- 57k cellular endpoints
- Headend software: BEACON
- Software integrations
- Professional Services including training, testing, & management

Fees

- \$11.1 million total capital
- \$37k monthly O&M
- 10-year initial term + negotiable renewal terms

Key Takeaways

- Badger did not commit to BPUB's damages terms
- BPUB will need to apply for a Buy America waiver for WaterSMART grant

Badger

Limitation of Liability

- No indirect, consequential, incidental, special, punitive, exemplary, or enhanced damages
- SaaS MSA:
 - Lesser of \$500,000 or the aggregate amounts paid under the agreement in the preceding 24-month period preceding the event giving rise to the claim

Indemnity

§ Badger to indemnify for claims arising out of or resulting from: violation of law; liens or bonds asserted by subcontractors; bodily injury or death or property damage; service provider's provision of or customer's use of the services; breach by contractor of the agreement; breach of confidential information

Governing Law and Venue

 Actions to be tried in the State and Federal courts in Cameron County, Texas.

Harris

Scope

- Compass Software:
 MeterSense, VEE Acceptance
 Prediction Extension, KPI
 Dashboard, Automated MIMO,
 Automated Remote Disconnect
- Software integrations including Cayenta CIS
- Professional Services including training, testing,& management

Fees

- \$370k total capital
- \$198k annual O&M
- 5-Year Initial Term + 1-Year Renewal Terms

Key Takeaways

- Harris provides PUB's CIS and will provide the Customer Portal, so integrations are well-known
- PUB has already done preliminary meter configurations to right-size the MDMS

Harris

Limitation of Liability

- § No indirect, consequential, incidental, special, punitive, or exemplary damages
- § Actual direct damages shall not exceed one- and one-half times (1.5X) annual subscription fees paid by BPUB to SmartWorks under the agreement

Support Agreement – Indemnity

§ SmartWorks to indemnify BPUB for software IP infringement

Governing Law and Venue

- Actions to be tried in the State and Federal courts in Cameron County, Texas.
- No trial by jury

Allegiant

Scope

- Water meter exchanges and retrofits
- Electric meter exchanges
- Electric RF communications network installation
- New electric meter testing
- Old electric meter reclamation
- Warehousing support

Fees

- \$5.8 million total capital
- Contract ends after implementation

Key Takeaways

- Allegiant abides by PUB's Living Wage policy and will also abide by Davis-Bacon requirements for WaterSMART grant funding
- Scope of work details many processes related to field and data quality, assurance, and standard operating procedures
- Additional meter box work may increase total costs by an estimated \$700k - \$3M
- Use of PUB warehousing reduced total cost

Allegiant

Support Agreement – Indemnity

§ Allegiant to indemnify for claims arising out of or resulting from: violation of law; liens or bonds asserted by subcontractors; bodily injury or death or property damage; service provider's provision of or customer's use of the services; breach by contractor of the agreement; breach of confidential information

Delay

- § Time limits in the contract documents are to be of the essence of the agreement.
- § Recovery damages for delay are not excluded

Release

 Allegiant releases BPUB from all claims for injury or death of any person and loss of or damage to property caused by Allegiant's work

Governing Law and Venue

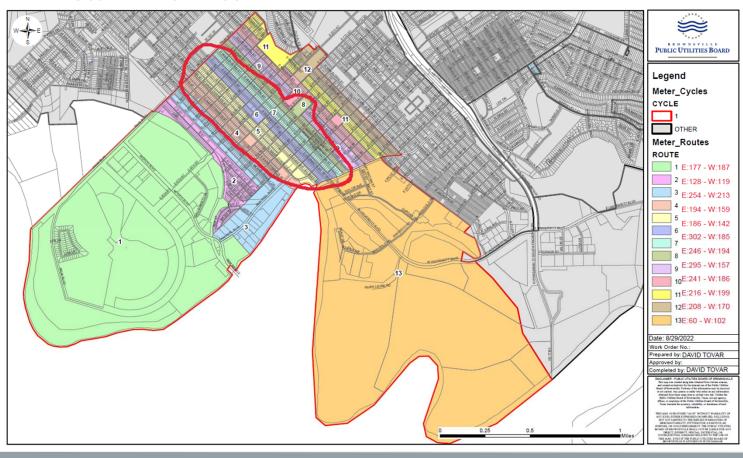
Actions to be tried in Cameron County, Texas.

Capital Budget by Vendor

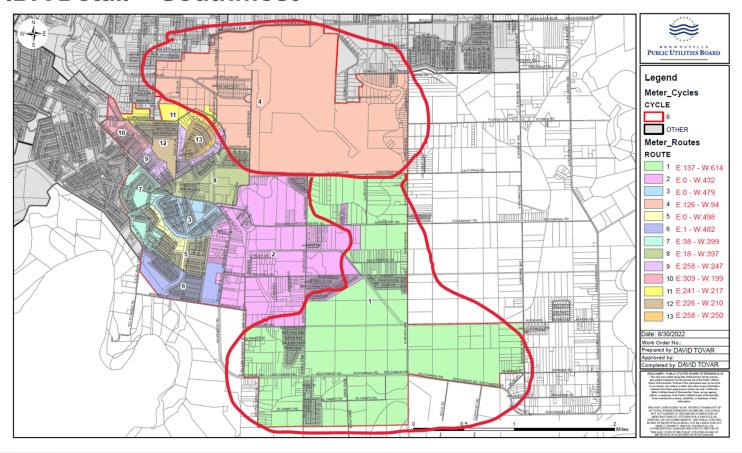
Vendor	Total CapEx	3 yı	rs. Capitalized OpEx	1	Total CapEx + 3 yrs. Capitalized OpEx
Landis+Gyr	\$ 6,739,245	\$	231,879	\$	6,971,124
Badger	\$ 11,222,766	\$	904,048	\$	12,126,814
Allegiant	\$ 5,685,466	\$	-	\$	5,685,466
SmartWorks	\$ 370,750	\$	595,653	\$	966,403
E Source	\$ 1,734,533	\$	-	\$	1,734,533
Spencer Fane	\$ 100,000	\$	-	\$	100,000
Interfaces	\$ 100,000	\$	-	\$	100,000
Subtotal	\$ 25,952,760	\$	1,731,580	\$	27,684,340
Contingency				\$	2,557,323
Total	\$ 25,952,760	\$	1,731,580	\$	30,241,663

Estimated Project Schedule

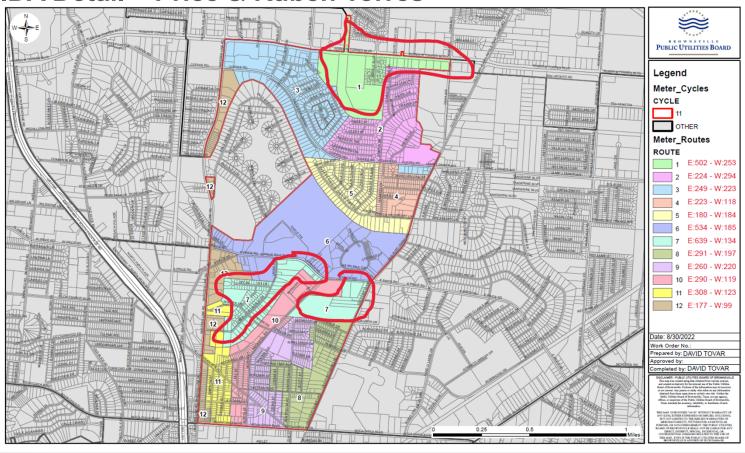
	1	2	3	4	5	6	7	8 9	10	11	12	13	14	15	16	17 1	8 1	9 2	0 21	22	23	24	25	26	27	28 2	29	30	31	32 3	3 3	4 3	5 36	37	38	39	40	41	42 4	44
Current AMI Project Phasing	lan-23	Feb-23	Mar-23	Apr-23	May-23	lun-23	Jul-23 Aug-23	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24	Apr-24	May-24	Jul-24	Aue-24	Sep-24	Oct-24	Nov-24	Dec-24	lan-25	Feb-25	Mar-25	4pr-25	CZ-KRIM	lun-25	lul-25	Aug-25	Oct-25	Nov-25	Dec-25	lan-26	Feb-26	Mar-26	Apr-26	May-26	Jun-26	Aug-26
Vendor Contracting				_	ractir																				_				1						_					
Design/Develop/Build/Integrate/Test						Ī		T	1		Desig	n/D	evel	op/B	uild	/Inte	grate	/Tes	t (15	mon	ths)						\top	\top	\top			T							- 1	
Initial Deployment Area - Water	1					\top					T	T	П				ID	A - V	/ater	(3 m	onths)					\top	\top							t				\top	\top
Initial Deployment Area - Electric																	ID	A - E	lectri	c (3 n	onth	s)					T					T								
Full System Deployment - Water															Т							Full	Syst	em D	eplo	yme	nt -	Wat	er (2	0 mo	nths)								
Full System Deployment - Electric																		Т	Т					F	ull S	ysten	n De	eploy	mer	nt - El	ectri	c (20) moi	nths)				- 17		
E Source Services	Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23 Aug-23	Sep-23	Oct-23	Nov-23	Dec-23	Jan-24	Feb-24	Mar-24	Apr-24	May-24	Jul-24	Aug-24	Sep-24	Oct-24	Nov-24	Dec-24	Jan-25	Feb-25	Mar-25	Apr-25	CZ-VBIVI	Jun-25	SZ-Inr	Aug-25	Oct-25	Nov-25	Dec-25	Jan-26	Feb-26	Mar-26	Apr-26	May-26	Jun-26	Aug-26
Task 1 -Vendor Contract Negotiations				9 m	onth	5									Т			Т									T					Τ								
Task 2 -Project and Vendor Management																			42	mont	hs																			
Task 3 -Solution Architecture		3 r	nont	hs		П									T												\Box	T				T								
Task 4 - Project Engineering											14	mo	nths																											
Task 5 -Testing Support															į.	16 m	onths	;																						
Task 6 -Data Management and Quality Assurance																16 m	nths																							
Task 7 -Business Process Design		2 n	nos			2 mc	s		3 mc	s				1	mo	nth			1 m	onth	1						3 1	mos				I								
Task 8 -Organizational Change Management						10	mont	hs																																
Task 9 -Customer Engagement							9 moi	nths																																
Task 10 -Meter Deployment Quality Assurance			3	mos														14	mos													T								
Task 11 -Fixed Network Deployment Support						1				4	Mon	ths																				T								


Appendix

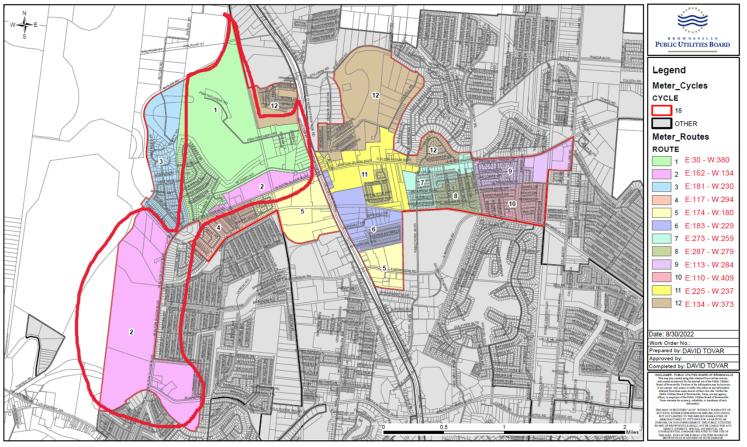
Estimated 5-Year O&M Budget by Vendor


	FY 2023	FY 2024	FY 2025	FY 2026	FY 2027	Subtotal
Landis+Gyr	\$73,565	\$77,232	\$81,082	\$85,126	\$89,371	\$406,376
Badger	\$0	\$448,663	\$455,385	\$462,207	\$469,132	\$1,835,387
<u>Harris</u>	\$198,551	\$198,551	\$198,551	\$198,551	\$198,551	\$992,755
Annual Total	\$272,116	\$724,446	\$735,018	\$745,884	\$757,054	\$3,234,518

IDA Detail - Downtown


- High density with meters clustered in tight areas including alleys
- 1223 electric meters
- 837 water meters
- · Locations of note:
 - E. Saint Francis
 - E. Saint Charles
 - E. Levee
 - · E. Elizabeth
 - E. Washington
 - E. Adams
 - Putegnat Elementary School
 - Wells Bank
 - IBC Bank
 - Texas State Bank

IDA Detail – Southmost


- Outer area of service territory with limited cellular reception
- 263 electric meters
- 708 water meters
- Locations of note:
 - Southmost Road
 - Dockberry Road
 - S. Minnesota
 - S. Indiana
 - Palm Grove school

IDA Detail – Price & Ruben Torres

- Apartment complexes with both water and electric service provides opportunity to stress test full system
- 1141 electric meters
- 387 water meters
- · Locations of note:
 - La Mansion Del Paso Apartments
 - La Residencia Apartments

IDA Detail – West Alton Gloor

- Significant number of water customers provides opportunity to stress test communications
- 192 electric meters
- 514 water meters
- Locations of note:
 - 5 schools Ortiz, Yturria,
 Stillman,
 Keller,
 Manzano

Project Timeline

Project Recap

2018-2020

Developed engineers' estimates, business case, and other supplemental educational materials to support AMI planning

September 12, 2022

Board approved total AMI project budget of \$29,711,655 including consulting services support and authorized the General Manager and CEO to negotiate a contract for services

Developed an AMI RFP, evaluated vendor responses, shortlisted two finalists resulting in Staff selection of a preferred vendor solution for Board review

2021 – August 2022

Estimated Project Schedule

Task / Milestone	Est. Date
Vendor Contracting Completed & PO issued	10/27/2023
Project Initiation Complete	1/17/2024
Project Kickoff	1/22/2024
Detailed Planning Complete	2/15/2024
Bench Testing Complete	6/12/2024
Systems Installation & Integration Complete	7/10/2024
Initial Deployment Area Complete	8/21/2024
Water Full Deployment Start	8/22/2024
Electric Full Deployment Start	11/28/2024
Full Network Installation Complete	12/11/2024
Water Full Deployment Complete	4/3/2026
Electric Full Deployment Complete	6/2/2026

The E Source Team

Our team has provided similar services to more than 200 utility and municipal clients across North America

POWER

technology integration and meter deployment. However, aside from their vast technical knowledge, what truly makes them our partner of choice is their professionalism, integrity, and unconditional support to ensure our

Andre Pedeferri, AMI Program Mgr. 253-502-8997 APedeferri@ci.Tacoma.wa.us

E Source = Utility Specialists + AMI Experts

Advanced Metering Infrastructure Tangible Benefits

Key Benefits

Custome


- **©**Enhanced customer experience
- Fewer estimated bills
- Leak detection & notification
- **Online** tools
- Consumption management
- ®Reduced carbon emissions
- Water conservation

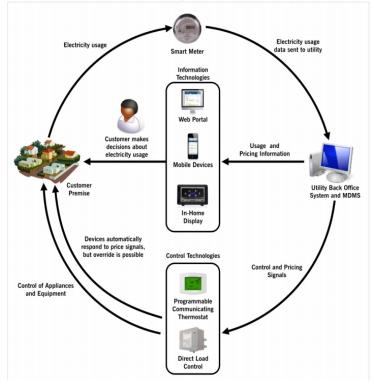
- Timely & accurate meter reading
- Reduced truck rolls
 Tr
- ©Enhanced outage detection
- Water leak detection
- ®Reduced bill adjustments
- **®**Real-time analytics
- Theft detection
- Improved safety
- Reduced carbon emissions
- Water conservation

Proactive Instead of Reactive

- The Utility Business Model is changing rapidly
 - Customers expect proactive notification
 - Outage notification and duration
 - Water leak notification
 - High electrical consumption
 - Communication via text, email or phone
 - Brownsville's median age is 29 years old* millennial generation
- In order to satisfy changing expectations, BPUB must strive to be proactive
- AMI is a foundational technology to support this goal

* Source: Brownsville Chamber of Commerce

How can AMI support proactive leak detection and notification?


- AMI could detect that there was a leak and text the customer about the highwater consumption.
- The customer would have found the leak, stopped it sooner avoiding the water and sewer charges and any damage the prolonged leak caused.

How could AMI have helped in a Demand

Reduction Event?

- The Utility could have reduced energy use on individual accounts
 - Customers receive proactive notification of
 - Limited duration shutoff
 - Rotated across the utility
 - No full circuit cut off
 - No massive demand on restarting a circuit
- Will prevent damage to existing infrastructure by a very controlled connect/disconnect program
- AMI would have dramatically reduced the outage timeframe from the Demand Reduction Event
- AMI typically reduces storm outages disruptions in the order of around 30%

Figure 2. AMI and Customer Systems Work Together to Automate Functions and Manage Demand-Side Consumption

How can AMI Support Outage Management and Verification?

AMI technology will provide the power status of all electric meters in real time

After major storms, there is no need to send scout crews out in unsafe conditions

Now: crews must manually check if outage has been fully restored or if there are still pockets of customers without power

With AMI: crews wait 5 minutes, call Dispatch to refresh the system, and know exactly who has power and who does not.

Case Study: Loudon Utilities Board

- A new AMI electric meter sent a high temperature alarm to the utility
- Customer was visited by field staff to take a closer look
- Possible tragedy averted and a very happy customer

A post shared by a customer to the LUB Facebook page generated substantial goodwill for the utility.

Case Study: Arlington Water Utilities

Texas A&M has conducted studied with Arlington Water Utilities to determine customer impact from AMI implementation

81% of customers who had access to their usage data felt they had a better understanding of their consumption

Over half (54%) of customers reported altering their usage patterns or being more conscious of usage to promote conservation

Examples of Realized Benefits

- Plano, TX: after providing customers access to their interval consumption data, overall call volumes dropped by 35% (from approximately 5,000 per month to 3,250 per month)
- Institute for Applied Ecology: in a survey, AMI has been shown to reduce peak demand anywhere from 2-20%
- Midwest Energy: averted over 95% of customer truck rolls for disconnects and investigations

Examples of Realized Benefits Cont.

- Sacramento, CA: Realized savings of approximately 236 million gallons—12.6 gallons per capita per day—by fixing ~807 fieldverified leaks between 2010-2011
- Leesburg, PA: reduced the non-revenue water loss from 50% to 15% after installing AMI technology to diagnose and reduce distribution leaks
- Central Maine Power: saw a nearly 30% decrease in customer calls for billing disputes and inquiries

Examples of Realized Benefits Cont.

- Burbank Water and Power: reports outages on its map within 2 minutes of power outage occurring
- Albuquerque Bernalillo County Water Utility Authority: averted 79% of leak credits by providing customers proactive notification of when a leak occurs
- Oklahoma Gas & Electric: reduced customer complaints by nearly 85%

BPUB AMI Team

Departmental Representation

- Because AMI will affect all areas of operations, BPUB's evaluation team invited staff from across departments to participate
- The assembled team represents a crosssection of Customer Service, IT, Engineering, Electric Operations, Water Operations, Billing, SCADA, and Communications

Evaluation Team Members

Eddy Hernandez – Dir. Cust. Service & IT	Luis Reyes – Electrical Engr.
Eduardo Campirano – Cust. Service Mgr.	Valeria Garza – Electrical T&D
Jose Garza – W/WW Maintenance Mgr.	Manuel Pena – Electric Meter Shop Supv.
Norma Gomez – CIS Support Mgr.	Luis Jimenez – Business Processes
Ryan Greenfeld – Comm & PR Mgr.	Eli Alvarez – Electric T&D Area Mgr.
Jose Luis Lopez – IT Hardware Mgr.	Arnulfo Mejia – Substations Mgr.
Omar Banda – IT Communications	Manuel Arredondo – Electric Ops Mgr.
Sergio Martinez – IT Mgr.	Eliazar Perez – Electrical Engr Mgr.
Elias Quintero – SCADA & Elec Supp Mgr.	Cesar Cortinas – Dir. Electric T&D
David Ramirez – W/WW Engr.	Diane Solitaire & Hugo Lopez - Purchasing